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Vignettes of Research on the Promise of Mathematical Making in Teacher Preparation

In this chapter, we share research that explores the potential benefits of a novel Making
experience within mathematics teacher preparation that we hypothesized would inform the
pedagogical and curricular thinking of prospective teachers of elementary mathematics
(PMTs). That experience tasks PMTs with digitally designing, 3D printing, and sharing an
original manipulative with a child to support and promote their mathematical reasoning and
understanding. With a focus on the design of new tools to support teaching and learning
through the use of learner-centered design practices and digital fabrication technologies, this
experience has prospective teachers exploring at the intersection of content, pedagogy, and
design. We begin by sharing the findings of a pilot study that revealed a surprising breadth of
teacher knowledge leveraged by PMTs through their Making activity. Those findings
convinced us of the promise of a Making experience within mathematics teacher preparation.
They also convinced us to pursue a research trajectory aimed at discerning what other
benefits the experience might offer. We share several vignettes of research on that trajectory
that take a variety of theoretical and methodological approaches to address research
questions at the intersections of teacher identity, teacher knowledge, pedagogy, and design.
We provide implications of our findings for teacher preparation and professional learning
throughout the chapter and its conclusion.

1 Introduction
Prospective elementary teachers (PMTs) have been characterized as coming to teacher

preparation with limited conceptions of mathematics (AMTE, 2013) and a model of
mathematics teaching that is oriented more toward the transmission of rules and procedures
(Ball, 1990; Ma, 1999; Thompson, 1984) than to the cultivation of conceptual understanding.
Consequently, teacher preparation must offer opportunities that challenge this model of
mathematics teaching and learning, and provide gateways to meaningful interactions and
deepened understanding of both content and pedagogy. Connecting with a body of research
that conceives of Making in education as the creative practice of designing, building, and
innovating with analog and digital tools and materials (Halverson & Sheridan, 2014), we
present one such opportunity that we centered in a novel Making-oriented experience within
mathematics teacher preparation. That experience tasks prospective teachers of elementary
mathematics (PMTs) with digitally designing, 3D printing, and sharing an original
manipulative with a child to support and promote their mathematical understanding. In
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seeking to determine what this experience might offer PMTs as they prepare for the work of
mathematics teaching, our work has pursued a number of theoretical directions and
methodological approaches to address research questions at the intersections of teacher
identity, teacher knowledge, pedagogy, and design.

Schad and Jones’s (2019) review of the research on the Maker movement in K12
education finds that students’ learning through Making dominates that literature, with foci that
include the improvement of STEM learning outcomes, increasing student motivation and
interest in STEM, and increasing equity by broadening notions of what counts as Making in
STEM education. The extent to which Schad and Jones’s review mentions research on what
teachers learn through Making is through studies of how they learn to design and run
makerspaces, and how they learn to integrate maker-centered learning strategies (Clapp et al.,
2016) into their own curriculum. Thus, there is almost no research on supporting teacher
learning through Making. We situate our work (Authors, 2017, 2018, 2019, 2020, 2021, under
review) within that gap in the research.

In this chapter, we share vignettes of several research projects that address our larger
project’s broader research question: What are the potential benefits of a Making experience
within mathematics teacher preparation? These vignettes provide snapshots of our work; they
also direct the reader to where they can read more about it. As the Making experience we
designed is central to each of these vignettes, we begin by describing it in detail in order to
enable a grounding for the theoretical and practical rationales that are presented afterwards.
Then, we present the pilot project that eventually became the launching point on the research
trajectory of our other projects. Next, we organize the presentation of our other projects into
two sections. In Section 2, we present those that occurred within the design environment of
PMTs’ making. In Section 3, we present those that occurred outside of it and within
approximations of practice (Grossman et al., 2009).

1.1 Making in Mathematics Teacher Preparation
This work connects with a body of literature that frames teachers as designers (e.g.,

Brown, 2009; Maher, 1987) of learning experiences and of the material resources that mediate
them. We conceive of design quite broadly to include the “intentional activity of transforming
ideas and knowledge” (Carvalho et al., 2019, p. 79) into “tangible, meaningful artifacts”
(Koehler & Mishra, 2005, p. 135). Our purpose in doing so is to introduce a pedagogically
genuine, open-ended, and iterative design experience into mathematics teacher preparation
that is centered on the Making of an original physical manipulative for mathematics teaching
and learning. We hypothesized that the experience would afford unique pathways of
diversified engagement that could promote an epistemic shift toward inquiry-oriented creative
and participatory practices that support teaching and learning mathematics with joy and
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understanding. Accordingly, we view this Making experience from a constructionist
perspective (Harel & Papert, 1991), which argues that meaningful learning happens through
the designing and sharing of digital or physical artifacts “that learners care about and have
some degree of agency over” (Schad & Jones, 2019, p. 2). Indeed, when teachers take agency
over the design of their own curriculum materials, they assume ownership over them and the
learning environments they generate and come to see themselves as agents of curricular and
pedagogical reform (Leander & Osborne, 2008; Priestley et al., 2012).

1.2 Curriculum Context
Data collection for this research took place over three implementations of the Making

experience between the spring of 2017 and the spring of 2020. The study occurred within a
specialized mathematics content course for PMTs at a mid-sized public university in the
northeastern United States. Although the university is a Hispanic Serving Institution (HSI),
the majority of the students in the three classes were not Hispanic. Over 90% of all three
classes of participants identify as female. These demographics are typical of the prospective
elementary teacher population.

Situated in an instructional context in which the teacher educators of the courses
practiced an inquiry-oriented pedagogy grounded in a constructivist theory of learning, the
course engaged students in a Making experience defined by the following task: “The purpose
of this project is for you to 3D design and print an original physical tool (or ‘manipulative’)
that can be used in teaching a mathematical idea, along with corresponding tasks to be
completed by a learner using the tool.” To realize their project, the PMTs learned to use the
web-based Tinkercad (Autodesk, Inc., 2020; see Figure 1, left) digital modeling platform. The
design of their manipulative and a corresponding set of problem-solving tasks aimed to reflect
a) PMTs’ knowledge of what it means to do mathematics and how we learn with physical
tools, b) their knowledge of elementary-level mathematics content, and c) their perspective on
pedagogy and curriculum in mathematics education. In addition to the design of the tool, four
written project components comprised the data corpus: 1) a “Math Autobiography” that calls
on students to reflect on their experiences as a student of mathematics and consider how those
experiences might inform their future work as mathematics teachers; 2) an “Idea Assignment”
that describes PMTs’ initial thoughts about a manipulative they want to create; 3) a “Project
Rationale,” which is an account of how their design reflects an understanding of what it
means to know and learn mathematics; and 4) a “Final Paper/Reflection” that presents
findings from a “Getting to Know You” interview and problem-solving interviews conducted
by the PMTs with their tool and an elementary-age target student.

Although the particular approaches varied somewhat across the three implementations of
the Making experience, in each instance, PMTs worked on their designs during in-class design
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sessions during three or four of the thirteen weekly class meetings. All design sessions – as
well as all other class meetings – were held in a large design lab (Figure 1, right), which we
chose deliberately because we imagined that the PMTs’ design activity would be more
inspired in an environment intentionally configured with affordances to support it and that can
accommodate the kind of immersive, collaborative social space that nourishes it. Digital
fabrication technologies, including about forty 3D printers and two laser cutters, lined the
perimeter of the space, as did bookcases of evocative 3D-printed objects designed by students
in other courses.

Figure 1. The Tinkercad design environment (left) and the design setting (right).

1.2 Practical and Theoretical Rationales
As we have already alluded to in passing, the design of the Making experience is

grounded in the learning theories of constructivism and constructionism. These theories
recognize that knowledge is actively constructed by a learner, with constructionism adding the
dimension that the knowledge should be constructed during the process of making a shareable
object (Harel & Papert, 1991). Then we took a Learning by Design approach (Koehler &
Mishra, 2005) to leveraging and potentially advancing this knowledge. Learning by design
engages PMTs in the active inquiry, research, and design – or the purposeful imagining,
planning, and intending – that precedes and interacts with Making. In doing so, it honors the
proposition that it is productive to develop teacher knowledge within a context that recognizes
the interactions and connections among these constituent domains of knowledge. The
approach has methodological advantages, as well, since it opens a window into the interplay
between a PMT’s iteratively evolving artifact and the application of teacher knowledge
domains in the artifact’s development. Indeed, Pratt and Noss’s case study (2010) offers a
proof of concept that a learning by design approach provides a venue for characterizing the
interplay among a participant’s knowledge domains as they are invoked during the design
process.

1.3 The Pilot Study
The pilot study for this project was an exploratory one. It took place in the spring of 2017

and its intention was to broadly discern the value of engaging PMTs  in Making and design
practices that were made possible by increased access to human-centered design practices and
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digital fabrication technologies, and that we hypothesized would inform their pedagogical and
conceptual thinking. Our analysis of the data had its genesis in a more narrow focus, which is
expressed in the following research question: What forms of knowledge can be brought to
bear on prospective elementary teachers’ design work as they Make new manipulatives to
support the teaching and learning of mathematics?
1.3.1 A teacher knowledge analysis of pedagogical content knowledge in interaction with
design activity

We took a grounded theory approach (Corbin & Strauss, 2008) to the analysis of PMTs’
written project artifacts using the teacher knowledge literature (e.g., Ball et al., 2008; Koehler
& Mishra, 2009; Shulman, 1986) to establish base codes followed by iterative analyses of
design cases to generate new ones. We found from that analysis that students used a variety of
forms of knowledge in the course of their design activity, including knowledge of
mathematics, specialized mathematical knowledge, knowledge of standards and curriculum,
knowledge of research on student learning, and knowledge of how students learn with tools as
informed by a constructivist perspective. PMTs wrote about how manipulatives aim to embed
mathematical knowledge, how ideas may be abstracted to construct ideas through students’
manipulations of their tools, and how learners can use their manipulatives as tools to learn
through problem solving rather than memorization. They also spoke to how affective concerns
(e.g., how their tool might be fun and engaging) and personal experiences as (e.g., struggling)
informed their design ideas. A complete articulation of these results that provides evidence of
each identified form of knowledge can be found in (Authors, 2017). We only wish to mention
that the surprising range of knowledge that PMTs brought to their design activity convinced
us of the promise of a Making-oriented experience within mathematics teacher preparation.
Consequently, we were convinced of the promise of further exploring the potential benefits of
that experience.

As a next step, we took a revelatory case study approach (Yin, 2009) to uncover deeper
insights that could help us better understand what we deemed to be an underexplored
phenomenon. Specifically, we sought to discern a relationship in the emergent interactions
between PMTs’ pedagogical content knowledge (PCK) and their design activity. Working
individually and asynchronously, two of the authors took their own grounded theory approach
(Corbin & Strauss, 2008) to open coding an initial pass of the data using base codes derived
from the literature on teacher knowledge. And in an iterative fashion, following each
independent review of the data, they came together for a collaborative consultation where they
shared and refined their codes and interpretations (Patton, 2015). At the culmination of that
analysis, they had each selected the same two working groups for case studies: “Avery”
(working alone) and “Casey and Mia” (working together). The researchers shared that they
were each drawn to the ways these PMTs made authentic connections between mathematics
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and the tools they were designing. Here we share some of the findings of the case of Casey
and Mia’s “Minute Minis” project (see Figure 2). That case is presented more thoroughly in
Authors (2019, under review) along with the case of Avery’s “Even Number Tool.”

Figure 2. Casey and Mia’s Minute Minis

1.3.2 Findings
Casey and Mia were inspired to design a manipulative that could help children reason

about the abstract concept of time. In their design rationale, they hypothesized about breaking
through the ordinarily obscure nature of time to make it more accessible to learners: “The
main goal of this project is to give a concrete representation of the relationship between hours
and minutes. Using manipulatives is especially important when exploring new concepts, and
[since] time is a very abstract concept, it is especially pertinent that students have something
concrete to work with.” This idea came from Casey, whose thinking was informed by
coincidental work as a student teacher:

Currently, most of the 2nd graders in my class can tell time to the nearest half hour, yet I am unsure
of how they know how to do this. Is it just because they know that when the minute hand is pointing
at the 6, I say _:30 and when it’s pointing at the 12, I say _:00? Or do they have a… deeper
understanding of time and how a clock works?

These considerations reflect how Casey’s PCK (wondering about students’ conceptions
of time) informed her design. Over the course of the project, these questions developed into
other strands of knowledge that she and Mia used to investigate these issues as the two were
driven by a desire to transform potentially limited conceptions of time from memorized
models into deeper mathematical meanings. Drawing upon other aspects of PCK and of
mathematical and curricular knowledge, Casey and Mia took an existing design of fraction
circles and used concepts from geometry to amend it for their objectives. They wrote:

[We] will be using the same concept of fraction circles, yet instead of labeling them with a fraction,
they will be labeled with minutes. For instance, a whole circle will be labeled ‘1 hour,’ while two
half circles will be labeled ‘30 minutes.’ [We] will also have [fraction] circles for 15 and 5 minutes. 

One of Casey and Mia’s key design decisions focused on being able to “visually illustrate
the concept of minutes as fractions of an hour.” The circular shape was important to them in
ensuring “that students would be able to use the Minute Minis directly on the face of a clock.
This would aid [them] in exploring the relationship between where the minute hand is
pointing and the number of minutes past the hour.” They deemed this design affordance
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essential in supporting student inquiry of the fractional ideas embedded in the tool so that the
child could assemble the fractional pieces to compute time.

In summary, Casey and Mia shared reflections that leveraged their knowledge of
fractions and area to mediate a bridge between abstract and concrete representations of time.
By supplementing the traditional focus of instruction about time with a concrete
representation that facilitates conceptual connections between a clock face and its underlying
area properties, they drew on this knowledge to articulate the mathematical richness
underlying their manipulative and its possible uses by a child.

1.3.3 Implications
As PMTs assumed the multi-faceted role of teachers as designers of instruction within a

space of technological possibilities, they created powerful and innovative tools, and their
work demonstrated a rich and mature repertoire of knowledge domains that we are not
typically afforded opportunities to see (AMTE, 2013). The identification and advancement of
this knowledge suggested to us the promise of a Making experience within mathematics
teacher preparation and convinced us of the value of discerning what other benefits the
experience might offer. Accordingly, our pilot work became the launching point on that
trajectory of research.

2 Knowledge Interacting with Design
With the theoretical and practical rationales for the Making experience now laid out, and

with evidence from pilot work that speaks to the potential benefits of that experience, we now
present vignettes of other research we have conducted on this trajectory. In this section, we
share findings of studies that occurred within the design environment of PMTs’ Making.
Then, in Section 3, we present those that occurred outside of it and within approximations of
practice. We made this distinction in our research as we sought to explore the potential for
transfer of PMTs’ learning from teacher preparation and into their practice. We did so,
because that connection too often proves rather difficult to sustain.

2.1 The Interwoven Discourses Associated with Learning to Teach Mathematics
in a Maker Context

Recent conceptualizations of teacher knowledge build on previous characterizations of
distinctive knowledge domains in order to promote a wider focus on their integration
(Scheiner et al., 2019). In this phase of our project, we adopted this perspective by viewing
teachers as learners and foregrounding their identities (Sfard & Prusak, 2005) in order to
recognize what affective, interpersonal, and social matters can bring to this conversation. That
is, by honoring the interrelationship between the learning of mathematics and the learners
themselves, the promise of this approach is suggested by the proposition that teachers’
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“invention[s] of ‘objects-to-think-with’... [offer] the possibility for personal identification”
(Papert, 1980, p. 11).

2.1.1 A discourse analysis of identity in interaction with mathematical and pedagogical design
activity

We adopted a commognitive perspective on learning (Sfard, 2007, 2008), which is one
that encompasses both interpersonal communication and individual cognition. Our objective
in doing so was to explore the premise that learning to teach mathematics can be seen as
changes in discursive activities that include narratives about mathematics and identity
(Heyd-Metzuyanim & Sfard, 2012; Sfard & Prusak, 2015). The following question guided the
research: As prospective teachers of elementary mathematics Make new manipulatives to
support the teaching and learning of mathematics, what might their discourses reveal about
the epistemology of learning to teach mathematics? We addressed the question through a
revelatory case study (Yin, 2009) of a prospective elementary teacher named “Moira” and by
framing mathematics learning as the interplay between discourses about mathematical objects
(mathematizing), participants of the discourse (identifying), teaching and learning (pedagogy),
and design activity (designing). This framework provided us with a lens through which to
study how the process of making a manipulative can provoke the four discourse activities and
make visible the intertwined nature of a teacher’s learning. We chose Moira because her initial
design was a tool intended to simulate the “keep-change-flip” algorithm for fraction division.
However, when the course’s teacher educator pushed back on the idea because it did not meet
the project’s expectations for a tool that would support a students’ conceptual learning, she
tried to make sense of the algorithm but could not, and eventually she abandoned the idea
altogether. We sought to understand this change through the lenses of the four discourses.

2.1.2 Findings
In this section, we present just two central results. These came from a follow-up

interview we conducted with Moira in order to understand her rationale for the change in her
design idea. The first concerns our analysis of this change through the discourses of
Mathematizing [M], Pedagogy [P], Designing [D], and Identifying [I], and is as follows:

“I wanted to make something that could be interpreted in many different ways” [M/P/D], she shared,
“that wasn’t something that I was just forcing them to, like, all right, you have to use it this way. I
wanted it to be able to be manipulated” [M/P/D/I]. As she considered her initial “keep-change-flip”
tool, she explained how she realized that, “flipping the fraction upside down in my initial tool... it
was just not useful [M/P/D] ... So I decided to switch to comparing fractions and then I came up with
this [fraction comparison tool]” [M/D/I].

These reflections revealed how Moira’s decision to abandon her fraction division design
was not just about mathematizing, it was also about identifying. As a teacher, it was important
to her that her students have the opportunity to develop their own ways of thinking about
fractions with a tool that can be used in a variety of ways. Moira acknowledged that the
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pedagogy promoted by the instructor in the classroom was also part of her decision to change
her design: “Well, [the change of design] was because we were talking and you [the teacher
educator] said, ‘you’re just teaching them how to – you’re just giving them a way to solve the
problem.’ And I realized, you’re right ... It wasn’t helping them learn how to do a problem”
[M/P/D/I]. By switching to a design for comparing fractions, Moira found that she could
participate in the discourse endorsed in the course and honor the teacher she wanted to be.

A second result emerged from our awareness that her current tool (see Figure 4, left)
could be used to make sense of fraction division and a question about whether Moira realized
this capability in her tool. Our query to her about this possibility using the problem, ½ divided
by 2, prompted Moira’s in-the-moment reflections such as this one: “½ divided by 2. ½, this
divides it into two equal parts, and I know this equals fourths, so this is ¼” [M/I]. Next, as she
was investigating 1 divided by 1/3, Moira took the 1 and 1/3 ring, guessed that the answer was
3, and said, “I know I can do it, and I’m seeing it, but I don’t know how to describe it” [M/I].
Moira was using her tool to make sense of this problem when we prompted her to explain
whole-number division (e.g., 6 divided by 3). As she reasoned through whole-number
examples [M], she exclaimed, “Oh! So, so, if I am dividing 1 by ⅓, there are three thirds in 1,
so it’s 3! Yes! You can do division with these… Wow! Fractions make so much sense now”
[M/I].

Moira’s shift from the use of a partitive conception of division to a measurement one
gave her sought-after language to describe her tool’s utility in her understanding of fraction
division. That mathematical discovery was intertwined with an expression that revealed how
emotionally invested she was in this realization. As she used her tool to think through fraction
ideas [M], Moira came to recognize its potential not only for her own learning, but also for
teaching fraction division in a way that aligned with her identity as a teacher [P/I]. Her
expressive body language and energy substantiated her enthusiasm for the discovery.

2.1.3 Implications
As in a woven tapestry, learning to teach mathematics weaves together four threads – or

discourses – that are unique to a PMT’s discursive experiences and particular to a learning
community where an inquiry pedagogy is promoted. In this sense, to characterize Moira’s
learning to teach mathematics as a complex structure of discursive activities interwoven in
dialectical unity is to illuminate the brilliance of a tapestry threaded by what she wants to
teach (mathematizing), how she wants to teach it (pedagogy), decisions about what resources
to make available (designing), and the kind of teacher she wants to be (identifying).
Collectively, these threads contribute to an apparently honest depiction of the “organic whole”
(Scheiner et al., 2019, p. 165) that is learning to teach mathematics.

This finding of the intertwined nature of the four discursive activities establishes that
identity is as central to learning to teach mathematics as is the learning of mathematics,
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pedagogy, and design. And its implications speak to the potential of interdisciplinary
experiences like the design experience as venues for the meaningful learning of learning to
teach mathematics within teacher preparation coursework.

2.2 Making as a Window Into the Process of Becoming a Teacher: The Case of
Moira

The process of becoming a mathematics teacher entails the development of an integrated
knowledge base including both content and pedagogy. Much research has been done to better
understand the forms that this knowledge base might take and how its development in PMTs
might be supported. What is less clear is an image of the experiences these PMTs find
formative as they progress through their teacher preparation coursework. Thus, in this phase
of our project, we sought to illuminate the processes of a teacher becoming as they are
mediated by a variety of social and conceptual resources within teacher preparation. The
following question framed the inquiry: How does a Making experience in mathematics
teacher preparation mediate the social and conceptual dimensions of the process of becoming
a teacher?

We addressed this question through a revelatory case study (Yin, 2009) in order to better
understand the processes at play in design activities that were hypothesized to underpin
moments on a trajectory of becoming a teacher. Again we chose Moira, and we did so
because, more than any other student, she designed aloud. Her words, gestures, and other
embodied actions gave unprecedented access to elaborate and interwoven discourses of
mathematics, pedagogy, identity, and design in Moira’s design conversation (Schön, 1992).
We were able to document her trajectory of becoming via an analysis of those discourses.

2.2.1 Framing making as mediated learning
We brought situated and sociocultural theories of learning to bear on our attention to

practice and to the social and conceptual artifacts that mediate knowledge and identity
formation through that practice. In particular, we grounded this work in Engeström’s (1987)
cultural-historical activity theory (CHAT) and Holland et al.’s (1998) concept of figured
worlds. The CHAT perspective offered a lens with which to situate Moira’s activity in relation
to the design context in which it arose. At the same time, a figured worlds perspective
captured the mediating role of social, material, and conceptual artifacts on learning as identity
formation. Together, the two perspectives proved useful in our analysis of the data to reveal
and craft narratives of salient moments in Moira’s becoming a teacher.

2.2.2 Findings
At the conclusion of our analysis, we chose four “moments of becoming” from the

collection of moments that had been coded in our analysis. Their titles appear below along
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with brief descriptions. The entirety of these narratives appears in (Authors, under review).
We describe them briefly here.

2.2.2.1 Moment 1: “I should not be allowed in this class. I’m having too much fun.”
This moment explains how an assemblage of design-related practices offered a space of

authoring (Holland et al., 1998) for Moira’s identity. Iterative enactments of agency involving
conceptual, material, and social artifacts mediated her identity development as she
“reconceptualize[d] what and who” (Vågan, 2011, p. 49) she was from one lived moment to
the next. In addition, within that space of authoring, Moira was afforded a space of
“improvisational play… [the] predominant form of agency” (Chang, 2014, p. 33) – the
“medium of mastery, indeed of creation, of ourselves as human actors” (Holland et al., 1998,
p. 236). Moira’s improvisational play appeared to have been fueled by creative tendencies that
she described as being embraced in elementary mathematics but later suppressed through the
message that “math and science will probably come difficult” to students with “creative
minds.” In contrast, these creative capacities were not only invited into the design session,
they were “demand[ed]” in response to the “possibilities of a design situation” (Schön, 1992,
p. 4). Furthermore, as she was sought out by classmates for help with their designs, she was
positioned by them as an expert. The community-subject interactions that mediated the rules
by which participants related to each other spoke to the situated nature of activity in the
figured world that emerged for Moira as she was once again positioned as a “top student,” just
as she was in elementary school.

2.2.2.2 Moment 2: “Ugh, you’re right. We can’t flip the first one. I’m gonna work on this.”
As we analyzed the evolution of Moira’s design within this Moment, we came to realize

the saliency of several artifacts that mediated her design decisions. A lived history of
all-too-common experiences in the figured worlds of traditional mathematics classrooms
informed her interactions with fraction concepts and the concept images (Tall & Vinner, 1981)
that were co-determined in them. In addition, pedagogical commitments and her knowledge of
content and students (Ball et al., 2008) interacted with design activity that was further shaped
by broader flow of social interactions distributed across the design environment. Taken
together, we were reminded of Roth’s (2012) assertion that we are only able to understand the
actions of a subject on the object of their activity when we consider all the relations that
mediate every aspect of the activity. Thus, this situated network of individual and collective
activities that mediated the distinctive evolution of Moira’s manipulative offered concrete
markers of the formation of her identity as she emerged as a more central participant in an
educational design community.
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2.2.2.3 Moment 3: “Do I know what a torus is? No. Am I using it? Yep!”
In this third moment we centered our analysis on Moira’s mathematics and how it

mediated her design activity. From a mathematical perspective, equal partitions of a unit
whole express the part-whole relationship that is fundamental to fraction knowledge. From a
design perspective, the notches that form these partitions embed that part-whole relationship
into Moira’s manipulative (see Figure 4, left). In addition, aesthetic considerations regarding
the form of those notches mediated Moira’s design as she decided to cut them using a torus, a
mathematical object she had hardly been familiar with but whose affordances she discovered
in action. In this regard, we found evidence of the “double arrow” (Engeström, 1987) of
mediating interactions between mathematics and design.

2.2.2.4 Moment 4: “I just figured out so much math!”
In this moment of becoming, as Moira realizes that she’s used her tool to learn fraction

division, she’s also realized her initial objective, the one she had abandoned and the one she
had now achieved, which was to design a tool to teach fraction division. And yet again, affect
and cognition arose as manifestations of the same accomplishment (Roth, 2012). In an act that
is a manifestation of community relations (Engeström, 1987) that had the researchers
participating alongside Moira in her quest to make sense of fraction division, everyone
celebrated along with her. “Wow,” she exclaimed. “Fractions make so much sense now. That
blew my mind... I’ve learned so much. This is a great day!”

2.2.3 Implications
The use of CHAT and figured worlds perspectives made apparent the formative power of

the Making experience by affording Moira opportunities to make choices that leveraged her
mathematical, pedagogical, and design knowledge and moved her along a trajectory of a
teacher becoming. This finding contributes to the research on teacher learning and identity
formation in teacher preparation. In addition, by further demonstrating the value of accounting
for identity formation in research on mathematics teacher education, this finding also
generates new opportunities to move the field forward in relation to research into the potential
value of constructionist, STEAM-integrated curricular experiences in teacher preparation.

2.3 The Nature of Prospective Mathematics Teachers’ Design Activity as they
Make Original Manipulatives

Positioning teachers as designers of their own curricular resources invites opportunities
for their explorations of innovation at the intersection of content, pedagogy, and design. And
given that there is almost no research on supporting teacher learning through Making outside
of our own project, this gap in the research misses the opportunity to explore the design
decisions teachers make through their design activity. This vignette addresses this gap as it
poses the following question: As prospective mathematics teachers Make new manipulatives
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for mathematics teaching and learning, what is the nature of the resources and rationales they
bring to their design decisions and how do these intersect to mediate their decision making?
We address this question through an exploratory case study approach (Yin, 2009) to
understand PMTs’ design activity by considering the three elements of each of their design
decisions (Figure 3). Then, we share findings from the analysis of this activity that convey the
diversity of design decisions, rationales, and mediating resources that it entailed.

Figure 3. The 3 elements of a design decision

2.3.1 Theoretical Framing
Grounding this work in a Learning by Design approach (Koehler & Mishra, 2005)

enabled us to characterize the interplay between a designer’s knowledge, experiences,
intentions, and other resources as they are invoked during the iterative design of the shareable
object. In addition, Schön’s (1992) notion of “knowing in action” (p. 2) enabled us to
characterize and organize the resources that mediated PMTs’ design decisions. That notion
provides that a “designer sees what is ‘there’…, draws in relation to it, and sees what he/she
has drawn, thereby informing further designing” (p. 5).

2.3.2 Findings
Here, we present the cases of “Moira” and “Anyango,” as their written work expressed

the greatest number of design decisions from among the thirty-four projects we analyzed. In
the subsections that follow, we share and contrast three of their design decisions.

2.3.2.1 Student-centered design
Both Moira and Anyango chose the child they had worked with in problem-solving

interviews earlier in the course as their intended user of a tool. Moira explained that the
student she tutors was having trouble with fractions, so she decided to create a tool to help
him. Anyango shared that the student she was working with said she enjoys fractions, so she
wanted to nurture that interest. Although both Moira and Anyango decided to create a fraction
tool, they provided different rationales for that decision. Moira hoped to help her child make
better sense of fractions; Anyango hoped to extend her child’s current thinking about them.

2.3.2.2 The nature of the tools
Moira’s design (Figure 4, left) is a tool for fraction comparison. It consists of “a series of

rings that rest on a cylinder... The notches help divide the rings equally up into pieces to
represent parts of a whole. Each ring represents a different number of parts, like sixths and
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eighths.” Anyango also designed a tool for fraction comparison (Figure 4, right), yet her
design is markedly different from Moira’s. Anyango described her tool as “a 3D version of
fraction strips. Each strip was made to be a rectangular/square piece that slides into individual
pegs…[the] blocks stack vertically... to indicate height as value and amount.”

Figure 4. Moira’s (left) and Anyango’s (right) fraction tools.
While the mathematics of fractions and the knowledge of technology mediated both their

design decisions, fraction concepts are embedded differently in their designs. For Moira, these
are represented as arc lengths of the partitions of a continuous ring; for Anyango, these are
represented as discrete fractions of the height of a referent whole. Relatedly, Moira’s imagined
utilization scheme involves aligning notches so that, for example, “the rings are able to be
compared, showing how many fifths are in one half.” Central to Anyango’s scheme is that “all
the fractions [can be] mounted on one platform… so that the student could begin to grasp how
all the smaller parts can equate and compare to the whole.”

2.3.2.3 The role of aesthetics
To Anyango, “The colors didn’t matter much.” Giving each fraction block its own color

would have been “aesthetically pleasing, but it did not affect how the manipulative worked.”
Moira made the same design decision, but with a different rationale mediated by different
conceptual resources. She explained that all her “rings have the same color,” because if each
ring had a unique color, it might “take away reasoning from children. If a student believes that
a yellow ring represents 1/6ths, they will immediately reach for yellow the second that they
hear sixths.” By giving the rings the same color and leaving them “unmarked,” Moira ensured
that children will construct their own meanings in relation to each of the rings, thereby giving
her tool the promise that it can “be used in multiple ways.” Thus, epistemological knowledge
mediated a decision that seems to reflect Moira’s commitment to an inquiry pedagogy that
affords multiple means of engagement.

2.3.3 Implications
As our research continues to discern the intellectual influences of the Making experience

on PMTs’ pedagogical and curricular thinking, this research adds more nuance to findings
from prior research that revealed the breadth of teacher knowledge that they bring to their
designs. It does so by revealing the particular power of design activity – namely the diversity
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of design decisions that PMTs must make in order to meet the expectations of the experience
– to elicit, articulate, and advance that knowledge. Thus, this finding speaks to the generative
power of an open-ended and iterative design experience in terms of the agency prospective
teachers enact throughout their design activity and the wealth of knowledge and experiences
that mediate it.

3 Knowledge in Practice
In the previous section, we shared vignettes of research on activities that took place

within the design environment of PMTs’ making. In order to explore the potential for transfer
of PMTs’ learning from the design setting and into their practice, in this next section we share
vignettes of research that occurred within approximations of practice. We begin with a
vignette that extends the one just presented in Section 2.3, which identified the knowledge
resources PMTs brought to bear on some of their design decisions.

3.1 Prospective Mathematics Teachers’ Designed Manipulatives As Anchors For
Their Pedagogical and Conceptual Knowledge

This next vignette presents research that sought to discern whether connections could be
made between the pedagogical/conceptual knowledge that PMTs construct in teacher
preparation and how that knowledge is enacted in their teaching. We wondered whether their
designs could possibly mediate – or be some sort of anchor for – their pedagogical visions.
Specifically, we asked the question: As prospective teachers Make new manipulatives for
mathematics teaching and learning, can connections be made between the
pedagogical/conceptual resources for their design decisions and how those designs mediate
the pedagogical moves they make in practice?

3.1.1 Research Design
To answer this question, we took a sociocultural perspective and grounded this work in

the notion of mediated activity, derived from Vygotsky (1978) and advanced as instrumented
activity by Verillon and Rabardel (1995). We use the term embedding to connote an
intentional (Malafouris, 2013) design element that embeds a PMT’s pedagogical and/or
conceptual knowledge in their tool. PMTs do so, so that in practice, the tool can afford
(Gibson, 1977) particular utilization schemes (Verillon & Rabardel, 1995) that the PMTs
hypothesized would enable the child to abstract (Piaget, 1970) percepts that are the
constitutive elements of concepts. We then took an exploratory case study approach (Yin,
2009) using grounded theory (Corbin & Strauss, 2008) to discern instances in PMTs’ teaching
when the use of their artifact implicated the pedagogical and/or conceptual knowledge
underlying their design rationales. The locus of these particular research efforts among the
broader research project is depicted as the arrow from “Design Decision” to “Enactment” in
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Figure 5. Note that central to the figure are the elements of a design decision that appear in
Figure 3.

Figure 5. Conceptual resources inform rationales for design decisions and may also be
evoked in enactment. Open arrows acknowledge that feedback is reciprocally informing.

3.1.2 Findings
Here we present two excerpts from “Roda” and “Anyango’s” tool-based problem-solving

interviews that demonstrate how their embeddings of pedagogical and/or conceptual
knowledge in their designs served as an anchor for that knowledge in practice. Their
manipulatives are shown in Figure 6.

Figure 6. (a) Roda’s decimal snake and (b) Anyango’s fraction tool.

3.1.2.1 Reasoning about the unit whole
Roda’s tool is a “Decimal Snake” (see Figure 6a) that she designed in order to teach a

child about decimals and decimal comparison. The tool consists of ten pieces, each equally
partitioned into ten parts. Thus, the decimal snake can be used to represent any value between
0.01 and 1 to two decimal places. These design features are Roda’s embeddings of the
concepts of the whole and its decimal parts. During the interview, when Roda asked her target
child to use the snake to compare 5.5 and 5.47, the child manipulated the tool and used it to
demonstrate his response: “5.47 is 5 and 47 hundredths, because it’s 3 hundredths away from
5 and 5 tenths.” While Roda’s design intention was for the child to only compare the decimal
parts, after 60 seconds of struggle, the child located 5.5 at (what we would identify as) 0.55 (if
the entire snake represented 1), and 5.47 at 0.47. We inferred from his solution that he had
unintentionally designated each piece of the snake as 1 (as opposed to 0.1) and each partition
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of a piece as 0.1 (as opposed to 0.01). Thus, he changed his designation of the entire snake
from 1 to 10, and consequently, each piece of the snake now represented 1. In such case, 5.5
would be presented as the 5th partition of the 5th piece.

Determined to help the child identify and resolve the confusion, Roda asked the child to
“Show me one tenth” on the snake. He pointed to one of the tenth pieces. “Two tenths?” he
pointed to the second (tenth) piece. Next, Roda asked, “Where is 5 and 5 tenths?” Roda’s
questioning perturbed the child’s thinking and provoked disequilibrium. As a result, the child
declared, “Oh, wait! This [entire snake] is one whole! 5 and 5 tenths, you can’t even make it
out of the snake!” Roda then leveraged the affordance that each piece of the snake could
represent a tenth of a whole to help him resolve his confusion about the representational
capacities of the tool.

Roda: You need how many snakes to make 5.5?
Child: You need 5– No, 6 snakes!
Roda: How can we compare [5.5 and 5.47] using 1 snake? Is that possible?
Child: We can pretend that each piece is one snake.

In this excerpt, Roda leveraged her unintentional pedagogical embedding of a conceptually
resourced design decision that allows for flexibility in naming the unit whole in relation to the
snake and its pieces, revealing the student’s thinking and posing purposeful questions to
advance his mathematical reasoning.

3.1.2.2 Noticing in action
While Anyango’s tool (see Figure 6b) is similar to Roda’s in purpose, Anyango explained

that she designed her tool “to help the student visualize and deepen their understanding as
they explore fraction relationships.” Her decision to design a tool that affords a vertical
stacking of fraction pieces rather than in horizontal arrays allows the child to have “all the
fractions mounted on one platform with the 1 (whole) always being visible, so that the student
could begin to grasp how all the smaller parts can equate and compare to the whole.”
Anyango also engraved the fraction name of each piece on one of its lateral faces. In practice,
she posed the task, Jack and his two friends each had the same size pizzas for lunch. Jack ate
5/8 of his pizza. Judy ate 2/3 of her pizza. And Sam ate 3/6 of his pizza. Who ate the most
pizza? Who ate the least? In response, the child stacked five one-eighth pieces, two one-third
pieces, and three one-sixth pieces, each on their own pedestal with their labels facing her
(Figure 6b, right). Anyango’s pedagogical intention was for the child to compare “heights as
amount” and identify the tallest as the one “who ate the most,”' and vice versa. In contrast,
when asked, “So, if we just look at this, who ate the most?” the child attended exclusively to
the symbolic representations engraved on each piece. This led her to decide that, “It’s Jack”
(represented by the 5/8 piece). She justified her answer by saying that “5 out of 8 is the
biggest of all of them… 2 out of 3 is smaller and 3 out of 6 is… kind of small.” Then, when
Anyango asked the child what made her think it is smaller, the child explained that, “The top
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is two and the bottom is three.” We infer from this response that the child was basing her
comparisons on interpretations of fractions not as parts of a whole but as two separate whole
numbers. That’s why, for the child, 5/8 is greater than 2/3.

We interpret Anyango’s next move as a noticing one (Sherin et al., 2011) that leveraged
her pedagogical knowledge about the efficacy of attending to, interpreting, and responding to
students’ thinking:

Anyango: If I turn this [pedestal] around [Figure 6b, left, such that the child’s gaze can no longer be
restricted to the fraction labels on the pieces], who has the most?

Child: This one <points to the stack of two one-third pieces, which corresponds to Judy’s share>.
Anyango: Who has the least?
Child: This one <points to the stack of three sixth-pieces, which corresponds to Sam’s share>.

In this excerpt, Anyango’s “flipping” move leveraged an unintentional design affordance that
we suggest served as an anchor for her pedagogical knowing in action mediated by that
affordance. Reinterpreting Schön’s (1992) concept of “knowing-in-action” as a
noticing-in-action, we suggest that in this instance, Anyango saw what was there, made a
move in relation to it, and saw what that move accomplishes, thereby informing her next
steps. Thus, by returning the tool to its initial, label-facing orientation so that the child could
connect the physical representation of the amount to the symbolic one, the child was
supported in determining a correct response to the question, “Who ate the most?”

3.1.3 Implications
In an attempt to solve the perennial problem that teachers tend to face considerable

challenges in transferring their theoretical knowledge into practice, this work explored teacher
learning at the interface between theory and practice by discerning whether connections could
be made between the pedagogical and conceptual knowledge that PMTs construct in teacher
preparation and how that knowledge is enacted in their teaching. As PMTs used the
manipulative they designed in a problem-solving setting, we analyzed instances when their
manipulative served as a mediating anchor for the pedagogical and conceptual knowledge
they acquired in teacher preparation and subsequently embedded in their designs. In relation
to practice, our identification of these instances of anchoring phenomena suggests that the
Making experience yielded material epistemic scaffolding (in physical manipulative form)
that supported PMTs and their commitments to the models of knowing and learning they
construct in teacher preparation. And in relation to theory, findings from this study and the
prior one that it builds upon suggest the analytic value of our design, rationale, resource, and
practice (DRR-P) framework for revealing the promise of the Making experience.

3.2 Dare to Care: A Case Study of a Caring Pedagogy on Mathematical Making,
Teaching, and Learning

This case study investigates the interaction between a caring pedagogy and Making, and
how the two informed each other in our project. Because the subject of mathematics (Stinson,
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2004; Gutiérrez, 2017) and the Maker culture (Barton et al., 2017) can be interpreted as
exclusionary to so many students, we wondered about the possibilities that caring pedagogies
could bring in broadening opportunities for learning and learners in these spaces. The three
central participants in this section include the teacher educator (TE) and the PMT, “David,”
each of whom brought caring pedagogies to the project and viewed themselves as interlopers
to the Making culture. And then there’s “Vincent,” a kindergarten student who is on the
autism spectrum and whose energetic ways of learning are not typically embraced in
traditional mathematical classrooms. By focusing on caring-centered relationships, we
illustrate how together, the participants redefined values associated with Making, traditional
mathematics, and what can get celebrated as learning.

3.2.1 Framework and Research Question
The fact that Making and caring can elicit both cognitive and affective concerns suggests

a need for a framework that accounts for these dual traits. Hackenberg (2010) terms a
mathematical caring relation (MCR) as one that honors both the mathematical and affective
parts of learning. She recognizes a teacher’s sensitivity to a student’s learning needs and their
ability to participate in the activity at hand as central to supporting meaningful MCRs.
Hackenberg describes how cognitive decentering can help a teacher to navigate an MCR by
decentering “from his or her own perspectives… to help students realize and expand their
ideas and worlds” (p. 239). In our project, we honor and utilize the mathematically
open-ended nature in designing and Making a manipulative; the sometimes, uneasy navigation
through emergent mathematical “unknowns”; the child’s unique experiences and needs; and
the tensions that are negotiated by carers (Noddings, 2012) in balancing these considerations.
With this framing, we posed the following research questions: How does enacting a caring
pedagogy during a Making-centered experience impact and broaden opportunities for
meaningful mathematics learning? How does this challenge traditional notions of who can
Make, who can participate in mathematics, and who cannot?

3.2.2 Methodology
In exploring the larger question of how the PMTs see themselves as mathematics

teachers, we were drawn to caring relationships that developed between project participants
and utilized the methodological stance of purposeful sampling (Creswell, 2007). We opened
our analysis to participants’ verbal utterances and intonations, body language, actions, and
mutual positionings (Simmt, 2000) as revealing defining moments in MCRs. The possibility
of intersecting caring theories with Making and the novelty of our data suggested a grounded
theory approach (Glaser & Strauss, 1967) to analyzing and cross-referencing our sources.
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3.2.3 Findings
Initially, David created a quick and easy answer to the task of Making the project

manipulative (by way of designing an already-existing manipulative with a fellow classmate).
However, he was invited to reconsider this approach by his TE, who noticed the special and
warm interactions between himself and Vincent that David had recorded in a “Getting to
Know You” session. Overcoming trepidation of her own, the TE invited David to design a
manipulative that responded to these interactions, and made clear that she would support
David in this initiative when he realized it would require more time, thought, and care. We
recognized this as the TE accepting responsibility for supporting David in caring for Vincent
and in navigating the discomfort and tensions (Noddings, 2012) that accompany this
pedagogical decision. David, in turn, opened to accepting responsibility for Vincent’s care by
sharing and utilizing Vincent’s knowledge and his love of diverse shapes. David attempted to
understand Vincent’s strengths with shapes, and after a few sessions with Vincent, opted to
design triangular, square, and hexagonal prisms with holes and corresponding inserts intended
to create a one-to-one matching task (for example, Which of these shapes fit together?).

During a design session, David noticed that multiple printed inserts did not fit into their
intended holes. The TE took advantage of this moment of struggle to support David through
his technological anxieties, and recommended including the extra “mis-shapes” in the
matching task (for example, Which of the multiple hexagonal inserts can fit into the
hexagonal hole?). David reflected on this as being a “teachable moment,” such that his
“mis-shapes” could become usable for Vincent’s learning. In another teachable moment,
Vincent showed David how every shape and insert need not match to fill the holes (e.g.,
Vincent drops hexagonal inserts into the square hole). These uninhibited moments of insight
suggested a transition in Vincent’s attention from a shape’s sides to whether or not it has a
hole—a driving force in understanding the concept of topological equivalence. These
explorations culminated when Vincent aligned the hexagonal and square prisms with unlike
holes to peer through them, and in response, David arranged the pieces between himself and
Vincent to form a telescope (see Figure 7)! Together, they locked eyes and exchanged laughter
and words of affirmation in an MCR where David decentered from the intended activity to
literally see his child’s point of view (Hackenberg, 2005).
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Figure 7. Vincent sees similarities in different-shaped holes.

3.2.4 Implications
The increasing pressures and responsibilities faced by teachers and teacher educators can

make enacting caring pedagogies seem especially daunting. Our project’s focus on Making
something for and with a specific student enabled both a TE and PMT to leverage their
caring-centered pedagogies, and speaks to the inclusivity that caring brings to learning.
Vincent, a member of the students with disabilities (SWD) community, approached and
demonstrated learning with animated physical enthusiasm. The TE and David enacted
caring-centered pedagogies that embraced Vincent’s inclination to learn with his body, explore
open-ended mathematical ideas together, and recognize that design “mis-shapes” could
become viable learning tools for Vincent.

By inviting David to substitute a more open-ended investigation for his initial, “easy”
project solution, the TE set in motion a ripple effect that challenged traditional notions of
mathematics learning in which uncomfortable discoveries such as David’s “mistakes” are
dismissed as divergent from intended tasks (Lampert, 1990). Instead, David embraced those
mistakes as an important part of his learning and celebrated Vincent’s mathematical
discoveries. In doing so, he defied the exclusionary notion that SWDs should not be expected
to participate in problem solving, and welcomed the unexpected (but worthwhile)
mathematical interpretations that open-ended investigations can bring. By providing a
platform “to demonstrate care for individual students and for the subject matter itself”
(Bartell, 2011, p. 54), this case demonstrates how Making and designing can create a novel
opportunity to embrace mathematical struggle, surprise, and discovery for all types of
learners.

3.3 Harmony and Dissonance: An Enactivist Analysis of The Struggle for Sense
Making in Problem Solving

The teaching and learning of mathematics requires teachers and students to give “explicit
attention to the development of mathematical connections among ideas, facts, and
procedures” (Hiebert & Grouws, 2007, p. 391). Indeed, the National Council of Teachers of
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Mathematics (NCTM, 2000) emphasizes the value of representing mathematical ideas in a
variety of ways, and that these representations are fundamental to how we understand and
apply mathematics. While much research has been done regarding the ways in which teachers
can support students’ engagement with multiple representations, what is less well understood
is the process by which multiple representations of a concept can be leveraged and connected
to contribute to learners’ meanings of the referent concepts for those representations. Thus, in
this phase of our research we aimed to address that gap as we posed the following question:
How do learners make sense of and coordinate meanings across multiple representations of
mathematical ideas?. We did so through a revelatory case study (Yin, 2009) of the problem
solving of two learners, “Dolly” (a researcher-participant) and “Lyle,” as they aimed to make
sense of fraction division by coordinating meanings across two artifacts, one being a “Fraction
Orange” physical manipulative that Dolly designed and the other being a written expression
of the standard algorithm (see Figure 8, left and right, respectively).

Figure 8. The Fraction Orange and the algorithm

3.3.1 An Enactivist and Semiotic Analysis of Emergent Problem-Solving Activity Involving
Multiple Representations of Fraction Division

This study is grounded in the enactivist theory of cognition (Maturana & Varela, 1987),
which recognizes that the learning environment (e.g., a task, setting) and the solver(s) (e.g., a
student, teacher) are structurally coupled and determined through a dynamic, emergent,
contingent, and “ongoing loop” (Proulx, 2013, p. 319) of interactions of problem solving.
Verillon and Rabardel (1995) add the dimension that sense making is inextricably linked to
the material and symbolic tools that mediate its learning. Thus, we considered what an
enactivist analysis might reveal about the processes at play in mathematical meaning making
as it develops through the complex interplay of signs and meanings (Maffia & Maracci, 2019)
associated with learners’ engagement with multiple representations. Maffia and Maracci’s
(2019) concept of semiotic interference is thus used in tandem with the enactivist analysis to
analyze the dynamic, emergent, and contingent (Proulx, 2013) interactions that Dolly and Lyle
have with the Fraction Orange and the algorithm.

3.3.2 Findings
While the 13-minute problem solving interview video offers many opportunities worth

sharing, here we present just two central moments in order to demonstrate what our
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theoretical lenses revealed. Note that all fraction pieces of the Orange (Figure 8, left
hemisphere) are named in our analysis just as Dolly and Lyle name them: the hemisphere of
the Orange is the whole, and that whole is partitioned into halves, fourths, eighths, and
sixteenths.

3.3.2.1 Embarking on a path of problem solving
The problem-solving interview opened with Dolly posing the problem, ½ ÷ ¼, on paper

alongside her fraction orange. Lyle chose the pen and paper (over the Orange), performed the
flip-and-multiply algorithm (½ ÷ ¼ = ½ × 4/1 = 4/2 = 2/1), and declared his answer to be 2.
We interpreted Lyle’s application of the standard algorithm as a structurally determined action
informed by a lived history of structural coupling with traditional school mathematics. To
Lyle, this execution of an algorithm and the answer it yielded was deemed “good enough” to
“survive” in school. It constituted what Lyle needed to do to achieve harmony with his
mathematics learning environment.

Next, Dolly directed Lyle’s attention to the Orange and asked, “Can you show me with
this?” From there, the pair set off to navigate a complex interplay of signs literally at hand.
Our semiotic analysis enabled us to identify moments of semiotic interference (Maffia &
Maracci, 2019) that they experienced as they pursued a non-linear path of problem-solving
activity punctuated by moments of what we referred to as either harmony, a pleasing fit, or
dissonance, a displeasing conflict or lack of fit. Next we present one of those moments.

3.3.2.2 A crowning achievement
Here we present what appeared to be a crowning achievement for Dolly and Lyle in their

search for harmony in meanings for fraction division mediated by the two artifacts. By
enchaining signs (Presmeg, 2006; Bartolini Bussi & Mariotti, 2008) across pieces of the
Orange and elements of the algorithm – specifically by translating interpretations of parts of
the Orange to interpretations of quantities in the algorithm (i.e. ½ and ¼) – they made sense of
those quantities. Then, they engaged in similar sense making in order to find interpretations
for the ½ and ¼ in the posed problem, ½ ÷ ¼.

Dolly: <referring to ½ ÷ ¼> We wanna take a half of one and divide it by a quarter of one, right?
Lyle: Yes.
Dolly: Take a half of one and divide – oh, that’s what it is!
Lyle: It’s 2.
Dolly: We wanna take this <points to the half piece of the orange> and see how many of those <now
pointing to quarter piece> fit in there <points to the half piece again. Then, with confidence:> And
that’s why our answer is 2.

Lyle: Yes.
Dolly: There’s still two halves in a whole, ‘cuz this <the expression, ½ ¼> is in regards to a whole.÷
<rephrasing> This is in regards to 1. So a half of 1 divided by a quarter of 1 is 2, because 2 quarters fit
into 1 half. Or <returning to the expression, > 4 quarters fit into 2 halves.

Lyle: Yeah.

23



24
International Symposium on 3D Printing in Mathematics Education, September 16-17 2021

In this excerpt, we observed the meaning Dolly makes of the expression, ½ ¼, by÷
enchaining interpretations of ½ and ¼ in light of the measurement meaning of division she
and Lyle enacted earlier, as well as the meanings they enacted for ½ and ¼ in the algorithm.
Next, Lyle re-enacted the interpretation for himself.

Figures 9a - 9e. Lyle re-enacts Dolly’s understanding of “4/2 = 2/1.”

Lyle: So this is half of a whole and this is a quarter of a whole. <Next, he turns his attention to the orange
(Figure 9a) and points to the half piece resting on the paper.> Half of a whole. <Next, he takes his pencil
and points to each quarter piece:> Quarter of a whole <Then, pointing to the two quarter pieces:> is 2.

Dolly: <pointing to the 2 quarter pieces> Yeah, ‘cause there’s two quarters of a whole.
Lyle: Yeah, that makes sense.
Dolly: ‘Cause there’s two of these <She pulls out the quarter pieces and sets them next to the half piece

(Figure 9b).> for every one of these <she says as she touches the half piece>.
Lyle: <with a sigh, perhaps of relief> Yes.
Dolly: Or there’s four of these. <She takes the quarter pieces out of the other half piece.>
Lyle: <points to the half piece and extends Dolly’s thinking (Figure 9c)>: For two of those.
Dolly: <revoicing Lyle> For two of those. <As she speaks, she aligns all of the quarter pieces as well as the

second half piece on the page (Figures 9d and 9e).>

As if to establish his own meanings for fraction division and its coherence in
representations across artifacts as Dolly had just done, Lyle used the pencil to re-enact a
physical bridge between the elements of the problem (½ ÷ ¼) and the pieces of the Orange.
He uttered “half of a whole” as he pointed to the ½ on paper, and “quarter of a whole” as he
pointed to the ¼. Then he repeated these phrases on the other side of the bridge: “half of a
whole” as he pointed to the half piece, and “quarter of a whole” as he pointed to the quarter
piece. We interpreted this activity as a matching of his interpretation of half of a whole and
quarter of a whole in the symbolic representations (½ and ¼, respectively) to the
representations he identified in the orange (the half piece and the quarter piece, respectively).
These embodied epistemic actions seem to reify the harmony that had finally emerged from
recursive interactions that culminated in an enchaining of signs signifying the sense he and
Dolly had made. This reification can be viewed as a newly coupled structure of fraction
division for Dolly and Lyle, one that offers a stark contrast to the structurally determined
response to fraction division that they enacted at the outset of their activity.

3.3.3 Implications
In analyzing the iterative cycles of harmony and dissonance experienced by Dolly and

Lyle, enactivist and semiotic analyses enabled us to see the apparent structural coupling they
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had with traditional school mathematics and that constituted their felt experiences throughout
their drive for fit. In light of this finding, we offer recommendations for pedagogical and
material resources in mathematics classrooms that enable, support, and honor this sort of
loosely structured problem-solving activity. As Proulx (2013) reminds us, students’ paths of
problem solving emerge in interactions with the environment and are contingent on their
particular mathematical structures and interactions. “Average” paths and tools presumed
viable for sense making simply cannot be determined a priori. Rather, resources should be
provided that are responsive to students’ creative and agentive efforts at sense making.

4 Conclusion
The Making experience at the center of this body of work had prospective teachers of

elementary mathematics innovating at the intersection of mathematics, pedagogy, and design.
That experience provided them with an opportunity to consider the interplay between the
iterative design of an evolving artifact and the application of teacher knowledge domains in
the artifact’s development. In addressing the broadest question, What are the potential benefits
of a Making experience within mathematics teacher preparation?, our research has revealed a
number of positive outcomes. These findings and their implications for teacher learning have
been shared at the conclusion of each of the vignettes we presented above. We provide only a
summary overview of them here.

Over and over, our findings demonstrate the formative value of immersing prospective
teachers in a communal design environment of collective social making and tasking them with
a pedagogically genuine design experience centered on the Making of an original physical
manipulative for mathematics teaching and learning. In particular, these findings show that the
experience informed the pedagogical, mathematical, and design thinking of prospective
teachers, while also demonstrating that identity formation (e.g., as a mathematics teacher) is
just as central to their learning to teach mathematics as those three forms of thinking. That
revelation in turn allowed us to determine that the experience supported prospective teachers’
movement along a trajectory of participation that we called a “teacher becoming,” with the
potential cultivation of a caring pedagogy and of knowledge about the formative power of
embodied activity in sense making as just two aspects of that becoming. Lastly, we shared
evidence of the experience’s potential impact beyond teacher preparation in that it yielded
epistemic scaffolds in material form that can support the connection between teacher
preparation and teachers’ practice.

All in all, we propose that these findings contribute to the bodies of research on both
teacher learning and identify formation in teacher preparation. They also generate new
opportunities for research that moves the field forward regarding the potential value of
constructionist, STEAM-integrated curricular experiences in teacher preparation. Future
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research could more closely explore the design of these environments in teacher preparation,
the teacher educator’s role in designing and facilitating these experiences, and the subsequent
in-service instruction of teachers who participated in these experiences during teacher
preparation.
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